When Weaker Can Be Tougher: The Role of Oxidation State (I) in P- vs N-Ligand-Derived Ni-Catalyzed Trifluoromethylthiolation of Aryl Halides

نویسندگان

  • Indrek Kalvet
  • Qianqian Guo
  • Graham J. Tizzard
  • Franziska Schoenebeck
چکیده

The direct introduction of the valuable SCF3 moiety into organic molecules has received considerable attention. While it can be achieved successfully for aryl chlorides under catalysis with Ni0(cod)2 and dppf, this report investigates the Ni-catalyzed functionalization of the seemingly more reactive aryl halides ArI and ArBr. Counterintuitively, the observed conversion triggered by dppf/Ni0 is ArCl > ArBr > ArI, at odds with bond strength preferences. By a combined computational and experimental approach, the origin of this was identified to be due to the formation of (dppf)NiI, which favors β-F elimination as a competing pathway over the productive cross-coupling, ultimately generating the inactive complex (dppf)Ni(SCF2) as a catalysis dead end. The complexes (dppf)NiI-Br and (dppf)NiI-I were isolated and resolved by X-ray crystallography. Their formation was found to be consistent with a ligand-exchange-induced comproportionation mechanism. In stark contrast to these phosphine-derived Ni complexes, the corresponding nitrogen-ligand-derived species were found to be likely competent catalysts in oxidation state I. Our computational studies of N-ligand derived NiI complexes fully support productive NiI/NiIII catalysis, as the competing β-F elimination is disfavored. Moreover, N-derived NiI complexes are predicted to be more reactive than their Ni0 counterparts in catalysis. These data showcase fundamentally different roles of NiI in carbon-heteroatom bond formation depending on the ligand sphere.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis, Characterization and Catalytic Activity of Ligand Stabilized Palladium Nanoparticle: A Catalyst Compliment to the Heck Coupling Reaction

The palladium metal is the most frequently used metal because of its excellent catalytic efficiency and most flexible varying oxidation state. So,  we report  that palladium nanoparticles (Pd NPs) stabilized by a ligand (o-vanilindiphenylethanedionedihydrazone, L)  using reverse micelles method have been synthesized, while all particles are in spherical shape and ranging between 10 and...

متن کامل

Kinetic Study of the Electrocatalytic Oxidation of Acetaldehyde at Ni/Al Layered Double Hydroxide Modified sol-gel derived carbon ceramic electrode

In this research, we reported a novel modified carbon ceramic electrode (CCE) using Ni/Al Layered double hydroxide as modifier was fabricated by sol-gel technique. The Ni/Al Layered double hydroxide modified sol gel derived carbon ceramic (Ni/Al LDH-SGD-CC) electrode was used for electrocatalytic oxidation of acetaldehyde. The oxidation of acetaldehyde happens at the potential where Ni (III) sp...

متن کامل

Halide Abstraction Competes with Oxidative Addition in the Reactions of Aryl Halides with [Ni(PMenPh(3−n))4]

Density functional theory (DFT) calculations have been used to study the oxidative addition of aryl halides to complexes of the type [Ni(PMen Ph(3-n) )4 ], revealing the crucial role of an open-shell singlet transition state for halide abstraction. The formation of NiI versus NiII has been rationalised through the study of three different pathways: (i) halide abstraction by [Ni(PMen Ph(3-n) )3 ...

متن کامل

Synthesis of Symmetrical Triaryl Amines by Nano-CuO Catalyzed Buchwald-Hartwig Cross-coupling Reaction: NH2-Thiadiazole as a New N-source

The one-pot synthesis of symmetrical triaryl amines using aryl halides and 5-Methyl-1,3,4-Thiadiazole-2-Amine as a nitrogen-transfer reagent is reported. Copper oxide nanoparticles that does not require the presence of any additional ligand, improved rate and facility of the synthesis of triaryl amines. The introduction of a new N-source, using green solvents PEG/H2O, normal atmospheric conditi...

متن کامل

Efficient copper-catalyzed amination of aryl halides with amines and N H heterocycles using rac-BINOL as ligand

A highly efficient copper-catalyzed system using commercially available racemic 1,1′-binaphthyl-2,2′-diol (rac-BINOL) as the ligand was eveloped for amination of aryl halides and heteroaryl halides with alkyl amines and N H heterocycles. Good to high yields were obtained for aryl romides and heteroaryl chlorides. The commercially available rac-BINOL ligand with excellent stability and high effi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017